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Abstract

A new buoyancy-modified turbulence model is developed on the basis of the four-equation model, k—e—02—¢gg, of
Hanjalic [K. Hanjalic, S. Kenjeres and F. Durst, Natural convection in partitioned two-dimensional enclosures at
higher Rayleigh numbers, Int. J. Heat Mass Transfer 39(7) (1996) 1407-1427]. The strong anisotropy of Reynolds
stresses due to buoyancy effects in the vertical boundary layers is considered by inclusion of the newly devised
‘return-to-isotropy’ concept in the pressure-strain correlation. The wall-reflection functions is also duly modified.
The new model has been tested in buoyancy-driven cavity flows through comparison with published experimental
data and the predictions from three other turbulence models [N. Z. Ince and B. E. Launder, On the computation of
buoyancy-driven turbulent flows in rectangular enclosures, Int. J. Heat and Fluid Flow 10(2) (1998) 110-117; K.
Hanjalic, S. Kenjeres and F. Durst, Natural convection in partitioned two-dimensional enclosures at higher
Rayleigh numbers, Int. J. Heat Mass Transfer 39(7) (1996) 1407-1427]. It has demonstrated significant
improvements in capturing the non-isotropy of Reynolds stresses and turbulent heat flux in vertical boundary
layers. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The cavity type of flow and heat transfer phenomena
is encountered in many engineering practices, e.g.
room heating, cooling of electrical and electronic
equipment, crystal growth, flows in nuclear reactor
and fire-induced smoke spread, etc. All these enclosure
flows are commonly dominated by buoyancy and near
wall effects. Being simple in geometry and boundary
conditions, cavity flows represent a simplified version
of these practical scenarios. As a result, this generic
type of physical phenomena has served and is continu-

* Corresponding author.
! Present addresss CHAM Ltd, Bakery House, 40 High
Street, Wimbledon, London SW19 5AU, UK

ing to serve as numerical and experimental benchmark
tests for the development and validation of turbulence
modelling strategies which can then be applied, with
confidence, to buoyancy-driven enclosure flows in
industrial applications. For this reason, turbulent natu-
ral convection has attracted considerable attention
from the CFD community.

For enclosure flows where the Rayleigh numbers,
Ra, fall in the range of 10°-10'2, there exist several dis-
tinct scale flow patterns, which are dominated by
different turbulent mechanisms. This well organised
coherent structure is widely regarded as hardly tract-
able by the single point Reynolds averaging method
[9]. For the cases of heating and cooling from vertical
sides, the turbulence is trapped in relatively narrow
zones in the downstream portions of the boundary
layers along the non-adiabatic vertical walls, while the
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Nomenclature

Cy, Cy, C5 coefficient in Eq. (16)

Ciow coefficient in Eq. (13)

Cy convective flux for stress tensor

Cy convective flux for turbulent Kkinetic
energy

C,1, Con coefficients in Eq. (6)

C4, CY%, coefficients in Eq. (7)

Ch, Cla

Cy coefficient in Eq. (11)

1 coefficient in Eq. (13)

D, diffusive flux for ¢

Dy diffusive flux for &

Dy diffusive flux in Eqgs. (4)—~(7)

Dy diffusive flux for temperature variance

Dy diffusive flux for stress tensor

Dy diffusive flux for turbulent kinetic
energy

E molecular effects, Eq. (6)

Ey molecular effects, Eq. (7)

e foo damping functions in Eqs. (6) and (7)

fs damping function in Eq. (15)

Ju damping function of Jones and
Launder

g gravitational accelerator

gi gravitational vector

G buoyancy production for k&

Gy buoyancy production for ﬁ

H height of tall cavity

k turbulent kinetic energy

L width of square cavity

n;, n;, n unit vector normal to walls

¥4 mean pressure

P shear production for &k

Py production for temperature variance

Py shear production for @

Ra Rayleigh number

Re, turbulent Reynolds number

t time

T mean temperature

U horizontal component of mean velocity

u; velocity fluctuation in / direction

U; mean velocity component in i direction

Tuj turbulent stress tensor

u0, ub turbulent heat flux vector

vl vertical component of turbulent heat
flux

V vertical component of mean velocity

v vertical component of velocity fluctu-
ation

X; co-ordinate along i direction

Xp distance normal to walls

Greek symbols

o, o molecular and turbulent diffusivities

o anisotropy of Reynolds stresses

B thermal expansion factor

Oy =1,if i=j;, =0, if i #j in Eq. (21)

& dissipation rate of turbulent kinetic
energy

g dissipation rate of temperature variance

2,89 homogenous parts of ¢ and &y

£ dissipation rate tensor for temperature
variance

&y dissipation rate tensor for Tuj

£ empirical coefficient, Eq. (12)

n empirical coefficient, Eq. (12)

Qi pressure correlation for EE

it turbulence—turbulence part of ¢

©in mean-strain part of ¢,

Qi3 buoyancy force part of ¢

Qijw wall-reflection part of ¢;

Piow wall-reflection part of pressure-scaler
correlation

u molecular viscosity

p density

oy turbulent Prandtl number of T

CE temperature variance

core region remains largely stratified and laminar.
Besides the large scale rotation in the enclosure, evi-
dence from numerical calculations and experiments
shows some secondary flows around the corners, hard
to detect at lower Ra numbers and conspicuous at
higher Ra numbers [1]. The velocity and temperature
gradients in the boundary layers are strongly affected
by the buoyancy force, the presence of the solid wall
and molecular viscosity. The buoyancy effects are im-
mediately felt by the flow in the so-called buoyant sub-
layer, the upper part of the inner sub-layer within the
boundary layer [10].

In order to introduce the present model, it is felt
necessary to briefly review some relevant aspects in the
development of turbulence models for buoyancy-driven
flows while more detailed reviews can be found in
Refs. [11,23].

1.1. Near wall effects

To account for the near wall effects, previous
researchers have adopted two methods: wall functions
and low-Re-number modifications. The first group,
represented by George and Capp [12] and
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Cheesewright [13], used the modified wall functions
concept, originally derived for high Reynolds number
forced convection flows, to avoid the need for fine grid
mesh to be allocated in the sub-layer for cheap compu-
tational costs. But the strong dependence on particular
characteristic parameters to certain flow patterns and
the lack of generality have very much limited the appli-
cations of this method {10].

An alternative method 1is the so-called low-
Reynolds-number modified k—e model, which inte-
grates the flow equations right up to the wall. With
ready access to more powerful computer resources
over the past decades, this method has attracted more
attention for modelling turbulence of low-Reynolds-
number flows. A number of such low-Reynolds-num-
ber k—¢ models have been proposed [14—18]. While the
standard k—¢ model was found to over-predict the
averaged wall heat transfer for tall vertical cavities
[14], the predictions from the low-Reynolds-number
k—¢ models of Lam and Bremhorst [15], Chien [16],
and Jones and Launder [17] were found to be reason-
ably close to the experimental measurements.
Davidson [18] used a combination of low-Reynolds-
number modifications partly from the models of Jones
and Launder [17] and that of Lam and Bremhorst [15]
in his ‘hybrid’ k—¢ model to calculate the turbulent
flow of air in the tall cavity of Cheesewright and co-
workers [2-5]. Hanjalic et al. [1] recently studied a
number of natural convection flows in empty and
divided cavities with different aspect ratios, boundary
conditions and partitions by employing the method of
Jones and Launder [17]. This low-Re-number modifi-
cation method of Jones and Launder is also adopted
for the present study to account for the near wall
effects.

1.2. Thermal turbulence

The importance of thermal turbulence, represented
by the turbulent heat fluxes, has long been realised in
the simulation of natural convection flows. Ince and
Launder [8] employed the Generalised Gradient
Diffusion Hypothesis (GGDH) to take into account
the interaction of the Reynolds shear stresses and the
span-wise temperature gradients. Hanjalic [9,11]
suggested that the minimum level for modelling the
turbulent heat flux in buoyancy driven flows should be
the second-moment closure, including the interactions
of the temperature variance and gravitational force,
and of the heat flux itself and mean strain. Although
the turbulence model of Hanjalic employed more com-
plex second-moment closure, it only achieved marginal
improvements in predicting the turbulent heat flux as
compared with the two-equation k—& model of Ince
and Launder [8]. On the predictions of other turbulent
quantities, it disagreed with the experimental data of

Cheesewright and co-workers [2-5]. This may be
attributed to the use of the eddy-viscosity (isotropic)
assumption to depict the Reynolds stresses in the
model. According to the experimental reports of
Cheesewright et al. [2-5], the greatest gradient of tem-
perature is in the horizontal direction, while the verti-
cal heat flux is three times as much as the horizontal
one. This implies that the anisotropy of turbulence has
significant effects both on the turbulent heat flux and
the Reynolds stresses in the buoyancy driven enclosure
flows.

1.3. Reynolds stresses

Among the literature for turbulence modelling of
buoyancy driven flows, little can be found on the non-
isotropy of Reynolds stresses in either the two-
equation type low-Re-number k—¢ turbulence models
or higher order turbulence models, e.g. the three-
equation k—&—62 and four-equation k—£—02—£y models
of Hanjalic [1,9]. Although the Reynolds stress model
in differential or algebraic form can account for the
anisotropy of turbulence due to buoyancy and near
wall effects, it has well known drawbacks: computa-
tionally expensive and numerically unstable [19,20].
When this model is used together with other complex
equations of turbulent scalar quantities, the benefit of
inclusion of the Reynolds stress model is oversha-
dowed by the uncertainties involved in assigning values
to the coefficients. Davidson [18] developed a ‘hybrid’
model for the Reynolds stresses by adding the buoy-
ancy term of the algebraic Reynolds stress (ASM)
model, as a second-order correction, to the eddy vis-
cosity model (EVM) in a linear uncoupling manner.
The ASM corrections were supposed to account for
the non-isotropy of turbulence in buoyant flows. His
results showed that the value of the second-order cor-
rection of Reynolds stresses is a few times as much as
that of the eddy viscosity part in the near wall region.
But the use of the Simple Gradient Diffusion
Hypotheses (SGDH) for the turbulent heat flux had
failed to improve the prediction significantly.

1.4. Pressure—strain correlation

The pressure-strain correlation is regarded as the
most important process in turbulence modelling. The
fluctuating pressure under the influences of buoyancy
and presence of solid wall has significant effect on the
behaviour of the Reynolds stresses and turbulent heat
fluxes. Although the concept of ‘return-to-isotropy’
[21] and wall-reflection functions [22] was originally de-
rived from intuition rather than strict mathematics, it
still gives better results over a wide range of shear
flows. Recently, Craft et al. [23] developed a new type
of second-moment closure turbulence model with far



3970 F. Liu, J.X. Wen [ Int. J. Heat Mass Transfer 42 (1999) 39673981

more complex expressions for the pressure—strain cor-
relation. It is, however, hard to justify its stability and
the physical meanings of the individual terms in the
correlation.

1.5. Objectives of the paper

In the present study, a new buoyancy modified tur-
bulence model has been developed. The model is based
on the four-equation k—e—82—¢, turbulence model of
Hanjalic [1]. The major contribution of the current
study is the newly devised ‘return-to-isotropy’ concept.
This is based on the common belief that high
Reynolds number flows promote isotropy and low tur-
bulence retains relatively strong anisotropy. The wall-
reflection function for pressure-strain correlation is
also modified to emphasise the buoyancy effects.
Effects of anisotropy on the dissipative motion are
considered by the method of Hanjalic [24].

For model validation, numerical computations have
been performed for the experiments of Cheesewright
and co-workers [2-5] in a tall air cavity of aspect ratio
(height to width) 5 on the full set of the mean and tur-
bulent quantities. A new set of experimental data for
another elemental natural convection configuration,
the square cavity [6,7], is also compared with the pre-
dictions from the present model. The present model
has been found to be in reasonable agreement with
both sets of experimental data. The predictions from
the low-Re-number model of Ince and Launder [8],
and Hanjalic’s three- [9] and four- [1] equation models
are also presented. The present model has demon-
strated significant improvements in predicting the tur-
bulent flow fields near the vertical walls in the
buoyancy driven enclosure flows.

2. Mean flow equations

The Navier-Stokes differential equations for mass,
momentum and energy can be written, in Cartesian co-
ordinates, as

=0 (1)

—5 = Di— - +pg (2)
1

=Dt 3)

a (U __\
b= g (v )
and
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ax; \ o, 3x,

The density is calculated by the ideal gas law.

3. Turbulence model
3.1. Governing equations
The following set of equations from Hanjalic [1] for

turbulent quantities of k, &, 02 and ¢ constitutes the
basic platform of the present model, as
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D, denotes the total diffusion term. The following
coefficients [1] were adopted:

C; Cy Ce CY ch c? Cl
0.07 1.44 1.92 0.72 2.2 1.3 0.8
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The damping functions f; and f,, in Eqs. (6) and (7)
are as follows [1]: f,=1.0—0.3 exp(—Re?) and f,p=1.

3.2. Turbulent heat flux

The algebraic expression [1] for the turbulent heat
flux derived from its parent full transport equation is
written, as

_ k(__ 3T _—_aU; =
9 ;= —C— Ui — ! § 2 :
” Cg(u LEry + Oy, Ty +npgi0 +<plew) (12)

where @4, is the wall-reflection term [22] as follows:

k3/2

Pigw = —Clow7 Durngn;
k

(13)

18X n

and x, is the distance from the wall and »; is the unit
vector normal to the wall.

3.3. Reynolds stresses

The partial differential transport equation for
Reynolds stresses is, as
D)
Dt

=Dij+Pij+Gg[+(Pij_3ij (14)

where the symbols of P; and G; denote the generation
terms owing to shear and buoyancy, and Dy is the
total diffusion term.

The second-moment closure [24] of the dissipation
rate tensor &y is employed to account for the ani-
sotropy of the turbulence dissipation motion, as

ey = o1 =030+ 0} (15)

where f;=(1+0.1Re,)!

The pressure—strain term ¢; can be traditionally
decomposed into turbulence-turbulence interactions
¢;1, mean strain contributions ¢; and buoyancy
effects ¢;;3. The mathematical expressions for the press-
ure—strain correlation were originally introduced by
using the linear ‘return-to-isotropy’ concept of Rotta
[21]. This model has successfully described the isotro-
pic trends of turbulence with the increases in Reynolds
numbers. But for low-Reynolds-number flows, it over-
states the isotropic effects of pressure fluctuations.

In the present study, instead of using complex math-
ematical descriptions for low-Reynolds-number flows,
which are difficult to be justified for engineering appli-
cations, the low-Reynolds-number damping function f,
of Jones and Launder [17] has been introduced to
modify the coefficients in Rotta’s model, as follows

Qi = —Cfutay (16a)

2
Pp = “leu(Pij - 55171’) (16b)
2
Piz = _Cifu(Gij - §5yG) (16¢c)
where
a; = (Tu] — ééi]-k)/k;
and

fu= exp(=3.4/(1 + Rey/50)%.

Following the previous investigator [26], two assump-
tions have been made in the development of the new
model for Reynolds stresses:

e The total flux of the Reynolds stress (Cy;—Dy), the
sum of convection and diffusion fluxes in the trans-
port equation for the Reynolds stress, is pro-
portional to the total flux of the turbulent kinetic
energy (Cr—Dy) [26], as

2
PU+GU+¢U—£U=§5U(P+G—8) (17)

e The eddy viscosity model (EVM) represented by Eq.
(18) can give appropriate estimation for the mean
strain effects on Reynolds stresses, and the second-
order correction (in the form of the algebraic
Reynolds stresses model, ASM) due to buoyancy
and near wall effects can be added to it.

S 2 oUu; ay;
(u,’u/‘)EVM = —3-5,jk — Vt(axj + a—xf) (18)

Accordingly, the new model for Reynolds stresses can
be written in the following form:

TG = (T gym + () aspa (19)

The second order correction term (Fuj)ASM, which
accounts for the non-isotropy due to buoyancy and
near wall effects, can be derived from Egs. (15)—~(17),
as follows

k(- 2
(@it asm = - ((TJFC‘_BI_%(GU - §5ijG)
e 20)

n k 1
e (cify +10 M

The wall-reflection function @4, is of the form of
Gibson and Launder [22]:
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(a)

(b)

Fig. 1. Computational grids: (a) tall cavity; (b) square cavity.

Table 1
Specification of coefficients and constants

C ¢ n C1ow Cy c2 c3
0.28 0.6 0.6 0.25 1.8 0.6 0.6
Ciw Cow Caw a Cu ¢
0.5 0.3 0.5 2.5 0.09 0.9
k3/2
P X
Pijw ClEX ,

& 3 3
clw% (5,-]-ukumnknm — Euku,-nknj — Eukujnkn,-)

3 3
+ow (5ij<ﬂkmznk”m - E(pianknj - E‘ijznk”i)

3 3
+C3w (5ij<Pkm3”k”m - §¢ik3”k”j - E(ijz’lk"i)

@1

where the coefficient c¢s,, is given the value of ¢y to
account for buoyancy effects. ¢;» and ¢;; in Eq. (21)
are not modified by the damping function f,. It is com-
mon knowledge that the presence of the wall will
increase the anisotropy of the Reynolds stress field by
reducing the stress normal to it and enhancing the
ones in the longitudinal directions. It is therefore
appropriate to consider that the wall-reflection func-
tions @, should behave differently to ¢; of Eq. (16)
and the original formula for ¢; in Eq. (21) can pro-
duce the correct non-isotropic trends in the near wall
region.

For the normal Reynolds stresses, the use of Eq.
(21) in the second-order correction has balanced the
need to emphasise the buoyancy and wall-reflection
effects, redistributing the turbulence energy between
the normal Reynolds stresses in the vicinity of the
wall. However, the inclusion of the first group inside
the brackets in Eq. (21) gave contrary predictions for
the shear stress in the region near the vertical walls as
compared with both sets of the cavity flow experimen-
tal data [5,7]. This is believed to be due to the fact that
the shear stress uv is even greater than the normal
stress 12 in the region near the vertical wall. To over-
come this difficulty, the wall-reflection function for the
shear stress @, (i #j) is modified to include only the
buoyancy effects, as

k3/2

Qi = —1.5¢3y (Pasrni + @yaneny)  for

ClEX, 22)
i#j

Furthermore, it is considered that if the buoyancy is to
increase the strength of turbulence when the vertical
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Fig. 2. Predicted profiles of the mean velocity and Reynolds
shear stress at mid-height across the tall cavity with different
grid sizes.

turbulent heat flux v is greater than zero, the contri-
butions from the vertical heat flux should bear the
same weight on the modifications to the shear stress as
the horizontal one. A new form of G, (i #2), the
shear stress generation rate owing to buoyancy in the
vertical plane, is proposed as:

Gn = gﬁe_ui(l + @LF%) /2.0 23)

It is worth pointing out that in the present model, the
shear production (P) of the turbulent kinetic energy in
the k equation (Eq. (4)), is still calculated by the eddy
viscosity approach (Eu‘j)EVM (Eq. (18)). Preliminary
tests have shown that the inclusion of the second order
correction in this term could cause enormous difficulty
in convergence. Other researchers, e.g. Davidson [18],
also reported similar experiences. This is thought to be
caused by the strong coupling between mechanical tur-
bulence and thermal turbulence in the second-moment
closure. It should be noted that the proposed second-
moment corrections for Reynolds stresses do not
change the level of turbulence, i.e. the sum of the cor-
rections for the normal Reynolds stress is zero.

Instead, it only re-distributes turbulent energy between
its components.

The constants in the Egs. (12)-(20) are listed in
Table 1 [1,22,25].

4. Numerical method

The SIMPLEC algorithm was adopted in the in-
house research CFD code [27,28]. As is shown in Fig.
1, the 2-D computational grids are staggered and clus-
tered toward the walls. Several grid sizes have been
tested, i.e. 60 x 60, 80 x 80, 100 x 100 and 120 x 120.
As can be seen in Fig. 2(a) and (b), little changes have
been found in the predicted profiles of velocity and
shear stresses at mid-height as the grid size increased
beyond 80 x 80. Therefore, the grid size of 80 x 80 has
been chosen for the final simulation reported here. The
‘false-time-step’ under-relaxation technique was used
to achieve convergence, with typically a time step of
1 s. This was equivalent to 20 and 30 times the esti-
mated residue time at each cell, H/\/0.1gBATH/NY
(NY, number of cell in y-direction), for the tall and
square cavities, respectively. Computations were
assumed to have converged after the absolute residual
mass source (over the whole computation domain) was
less than 107* and the changes in any computing
values at the monitoring point over a 10-iteration cycle
were less than 0.5%. Approximately, between 10-50
sweeps per time step and totally 1500-2000 time steps
were required to obtain the final steady-state solutions
on a DEC Alpha 3000/400 workstation.

5. Experiments considered and boundary conditions

Two sets of experiments in air filled cavities have
been considered. The first was a tall cavity of aspect
ratio 5:1 with dimensions of 2.5 m (H)x 0.5 m
(W) x 1.0 m (D), as used by Cheesewright et al. [2-5].
Two vertical walls with a distance of 0.5 m were main-
tained at nominally uniform temperatures of 77.5°C
and 31.5°C. Special measures have been taken to insu-
late the top, bottom and other two side surfaces. It is
widely acknowledged that it is very difficult to achieve
real adiabatic conditions in an air filled cavity. The
unidentified heat losses in these tall cavity experiments
were estimated to be about 20% of total heat input
into the cavity [2-5]. In a more recent computation
reported by Ince and Launder [29], the heat losses
through the non-isothermal walls were allowed and
improved agreement with the experimental data was
achieved. Such modifications to the boundary con-
ditions have not been made in the present study as the
main purpose of this paper is to illustrate the improve-
ment obtained by the present model on the predic-
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Fig. 3. Mean flow property distributions across the tall cavity
at x/H = 0.497: (a) vertical velocity; (b) temperature.

tions of turbulent quantities in the vertical boundary
layers.

The second case was a square cavity investigated
by Tian and co-workers [6,7]. The cavity was 0.75 m
H)x0.75 m (W) x 1.5 m (D) with two opposite
isothermal walls at 50°C and 10°C giving a Ra num-
ber of 1.58 x 10°. Unlike the case of Cheesewright,
the horizontal walls, ceiling and bottom, were left to
have sufficient heat transfer with the surrounding
which was being maintained at a constant temperature
of 30°C.

In both cases, the fixed temperature boundary con-
ditions are imposed on the heating and cooling ver-
tical walls: 77.5°C and 31.5°C for the tall cavity,
and 50°C and 10°C for the square cavity, respect-
ively, Adiabatic condition is specified on the hori-
zontal walls of the tall cavity and the counterpart in
the square cavity are treated as highly conductive
walls.
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Fig. 4. Profiles of turbulent heat flux across the tall cavity at
x/H = 0.497: (a) horizontal; (b) vertical.

6. Results and discussions

Numerical predictions were made for the two sets of
experimental data using the present turbulence model
as well as the low-Reynolds-number turbulence model
of Ince and Launder [8] and Hanjalic’s three- [9] and
four- [1] equation turbulence models.

6.1. Case [—tall cavity

In the first test case, ie. the tall cavity of
Cheesewright et al. [2-6], the comparisons were made
for the mid-height considering that the imperfect
boundary conditions on the top and bottom walls
should not affect the mid-height distributions of par-
ameters significantly. Fig. 3 shows the distributions of
the mean properties. It is seen that the predictions
from the four different turbulence models on the mean
velocity and temperature profiles almost collapse on
one curve across the cavity. The present model slightly
under-predicted the vertical velocity boundary layer
thickness. All the models have achieved reasonably
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Fig. 5. Profiles of turbulent kinetic energy across the tall cav-
ity at x/H = 0.497.

good agreement with the experimental data. The pre-
dicted temperatures seem to be generally higher than
the measured values. This discrepancy can be mainly
attributed to the aforementioned heat losses through
the top, bottom and side walls, which were estimated
to be about 20% of the total heat input to the cavity
[2-5]. Several other researchers, e.g. Ince and Launder
[8], have also experienced the same problem. These
heat losses had the effect of lowering the temperatures
in the core region in the experimental data and it
could also lead to an unequal drop of temperatures in
the vertical boundary layers of the hot and cold walls.
As a result, asymmetry of the turbulent quantity distri-
butions was observed in the experimental data.

Fig. 4 is the comparison of predictions for the turbu-
lent heat fluxes. The present model has achieved much
closer agreement with the experimental data in the
region near the hot wall. All the other three models
over-predicted the horizontal turbulent heat flux, es-
pecially the Hanjalic’s four-equation model, and
under-predicted the vertical turbulent heat flux. Near
the cold wall, the comparison has presented a rather
complicated picture. All four models have predicted
higher horizontal turbulent heat flux than the exper-
imental data. For the vertical turbulent heat flux, the
present model predicted higher values than the exper-
imental data, and the Hanjalic three-equation model
and the Ince and Launder model predicted lower
values, while the Hanjalic four-equation model has the
closest agreement with the experiments. Considering
the asymmetry of the turbulence in the cavity due to
the heat losses, the agreement obtained by the four-
equation model of Hanjalic near the cold wall would
be likely regarded as a coincidence rather than the
model performance.

As shown in Fig. 5, all the models have predicted
similar values for the total turbulent kinetic energy
with predictions of the current model being slightly
higher. As Cheesewright et al. [2-5] did not report on
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Fig. 6. Profiles of Reynolds shear stress across the tall cavity
at x/H = 0.497.

the measurement of this quantity, we can not make
direct comparisons with the experimental data. For the
shear stresses, as shown in Fig. 6, none of the models
agree with the experiments. However, the peak value
and distribution between the hot wall and the location
of the peak value, as predicted by the present model,
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Fig. 7. Profiles of velocity fluctuations across the tall cavity at
x/H = 0.497: (a) horizontal; (b) vertical.
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are closer to the experimental data than the other
three models. The poor agreement near the cold wall
can again be attributed to the heat losses in the exper-
iments.

A comparison of the predicted and measured hori-
zontal and vertical velocity fluctuations is given in Fig.
7. It can be seen that the predictions of the present
model are much closer to the experimental data in the
vertical boundary layers. However, all the models,
except for the Ince and Launder model, have over-pre-
dicted both the horizontal and vertical velocity fluctu-
ations in the core region where the buoyancy and
turbulence effects are not as strong as that in the verti-
cal boundary layers. The damping functions adopted
here for low-Reynolds-number turbulence were orig-
inally derived for the two-equation k-¢ model. All the
other three turbulence models, Hanjalic’ three- and
four-equation models and the present model, were

........ ince & Launder
N . . 01 -—— Present L
s B | Ince & Launder ' ° B
I —— Present )
." o Exp. E
g £
: s
é R0 —— H
=
-0.3
0.1 0.2 0.8 0.9 1.0
x/L xL
(a)
50 I I
........ ince & Launder
S 40 4 o e
[
e
b= ]
E 30 #2000 00 ¢ aa0do00s
2
J -4
£ 20
=
10
0.0 0.2 0.4 0.6 0.8 1.0
/L
(b)

Fig. 9. Profiles of mean velocity and temperature at mid-height of the square cavity: (a) velocity; (b) temperature.
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Fig. 10. Distributions of velocity fluctuations at mid-height of the square cavity: (a) horizontal; (b) vertical.

based on the solutions for the transport conservation
equations for k, ¢ and 82/gg. This implies that the
damping functions have not reduced the level of turbu-
lence intensity enough for the free flow low-Reynolds-
number effects in the core region.

In Fig. 8, the profiles of dimensionless temperature
fluctuations across the cavity are plotted. It is seen
that the present model, (Ince and Launder model is
not included here, as it can not predict temperature
variance), slightly over-predicted the temperature fluc-
tuation at the hot wall boundary layer while Hanjalic’
three-equation model slightly under-predicted the
results. However, it is worth mentioning that predic-
tions of the present model are still closer to the exper-
iments than Hanjalic’s four-equation model. This is
encouraging as the present model is developed on the

basis of that model. Due to the asymmetry of the ex-
perimental data caused by the unidentified heat losses
through the non-isothermal surfaces, it is difficult to
draw any specific conclusion from the comparison for
the region near the cold wall. For this particular
region, the comparison in the second test case, i.e. the
square cavity with almost symmetrical boundary con-
ditions, will be more reliable.

6.2. Case 2—square cavity

This is the square cavity tested by Tian ez al. [6-7].
Fig. 9 presents the mean velocity and temperature pre-
dictions in comparison with the experimental data.
Since the values of the mean velocities remain almost
constant in the core region, only the velocity profiles in
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Fig. 11. Shear stress distributions at mid-height of the square cavity.

the regions near the hot and cold walls are plotted
here. For the vertical velocity in Fig. 9(a), it is seen
that the present model is in excellent agreement with
the experimental data while the other three models
give higher peak values. (As the predictions of the
other three models are almost on top of each other,
only the results from the model of Ince and Launder
are plotted.) More importantly, the comparison has
demonstrated that the present model has correctly pre-
dicted the vertical velocity boundary layer thickness.
In Fig. 9(b), it can be seen that the temperature distri-
butions predicted by the present model are also in
reasonably good agreement with the experimental

data. The other models have slightly under-predicted
the mean temperature.

Similarly, as shown in Fig. 10, the present model
has achieved significant improvement on the predic-
tions of velocity fluctuations. All the other three
models have over-predicted the horizontal fluctuation
by 20% and under-predicted the vertical fluctuation by
40%.

In Figs. 11 and 12, the computations on shear stress
and turbulent kinetic energy are plotted. The present
model has also closely matched the experimental data
while the shear stress predicted by the other three
models are only about one third of the experimental

4

i

e — - Inoe SLaunder

;'c’ 3 A Hanjalic's 3-eqn. fA

= — — Hanjalic's 4eqn.

5 —— Present 8

[ O Exp.

5 2 5 r

L

2

2 ) o

£ 1 -0

gl e /o
0 o D0 0 . 0 0 0. 0 0. 0.0 0. 0

0.6 0.8 1.0

Fig. 12. Turbulent kinetic energy distribution at mid-height of the square cavity.
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value and the turbulent energy is under-predicted by
about 20%.

As shown in Fig. 13, there are relatively large
discrepancies between the predicted temperature
fluctuations by all the models and that measured
in the experiments. This is probably due to the
improper description of the conservation transport
process of the temperature variance dissipation rate,
gg. Further work is now under way to explore
a more suitable form of & equation for buoyant
flows.

Most importantly, the evidence from Figs. 10-13
has shown that the present model has correctly pre-
dicted the lateral extent of the turbulent boundary
layer near the vertical walls. The predictions by the
other three models have shown effectively zero flow in
this region. In addition, the fluctuations of turbulent
quantities predicted by the other three models fall
rapidly to zero, as one goes away from the wall. The
asymmetry of the turbulent quantities predicted by the
three other models is appearing at the mid-height,
more apparently in Figs. 10 and 13. This might be
attributed to the fact that these models tended to pro-
duce such weak turbulence that the predicted turbulent
fields became very sensitive to any changes in fluid
properties.

Because of the almost symmetrical boundary con-
ditions in the square cavity (unlike the Cheesewright’s
case which suffered asymmetry due to heat losses
through the side, top and bottom surfaces), the present
model predictions of the mean and turbulent quan-
tities in the region near the cold wall of the square
cavity are also in good agreement with the experimen-
tal data.

7. Conclusions

A new buoyancy-modified turbulence model has
been developed. The new model has the same complex-
ity level as Hanjalic’s four-equation model [1], but it
includes new modifications to account for buoyancy
and wall-reflection effects in Reynolds stresses. It has
also avoided the instability on the convergence of sol-
ution, which Reynolds stresses models often suffer.

The new model has been compared with three other
turbulence models and the experimental data of
Cheesewright et al. [2-5] in a tall cavity of aspect ratio
5 and of Tian et al. [6,7] in a square cavity. In both
cases, the present model has obtained very encouraging
agreement. The following major conclusions emerged
from the current study.

1. The present model has demonstrated its capability
to predict the lateral extent of the turbulent bound-
ary layer near the vertical wall. Where as the turbu-
lence models which adopt the eddy viscosity
approach to describe the Reynolds stresses, have
failed to predict this flow feature correctly (Figs. 9—
13).

2. The present model has achieved significant improve-
ment on the predictions of velocity fluctuations for
the region near the vertical walls (Fig. 10).

3. None of the models considered have achieved agree-
ment with the tall cavity data for Reynolds shear
stresses. The predictions of the present model are,
however, in excellent agreement with the square cav-
ity data for both Reynolds shear stresses and turbu-
lent kinetic energy (Figs. 6, 11 and 12). (The tall
cavity data did not contain measurements for turbu-
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lence kinetic energy.)

4. The present model has achieved much closer agree-
ment with the experimental data for turbulent heat
flux in the region near the hot wall. All the other
three models over-predicted the horizontal turbulent
heat flux and under-predicted the vertical turbulent
heat flux (Fig. 4).

5. Except for the Ince and Launder model, all the
other models (including the current one), have over-
predicted both the horizontal and vertical velocity
fluctuations in the core region for the tall cavity but
under-predicted these quantities for the square cav-
ity (Figs. 7 and 10).

6. The predictions from the current model for the tur-
bulent quantities are symmetric. This is anticipated
because of the almost symmetric boundary con-
ditions. The turbulent quantities predicted by the
other three models are, however, asymmetric (Figs.
10 and 12).

Further work is now under way to test the model on a
wider range of test cases and to establish a more suit-
able form for the &y equation.
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